Dynamic k-Struve Sumudu solutions for fractional kinetic equations
نویسندگان
چکیده
In this present study, we investigate the solutions for fractional kinetic equations involving k-Struve function using the Sumudu transform. The graphical interpretations of the solutions involving k-Struve function and its comparison with generalized Bessel function are given. The methodology and results can be considered and applied to various related fractional problems in mathematical physics.
منابع مشابه
Fractional calculus and application of generalized Struve function
A new generalization of Struve function called generalized Galué type Struve function (GTSF) is defined and the integral operators involving Appell's functions, or Horn's function in the kernel is applied on it. The obtained results are expressed in terms of the Fox-Wright function. As an application of newly defined generalized GTSF, we aim at presenting solutions of certain general families o...
متن کاملExact Solution for Nonlinear Local Fractional Partial Differential Equations
In this work, we extend the existing local fractional Sumudu decomposition method to solve the nonlinear local fractional partial differential equations. Then, we apply this new algorithm to resolve the nonlinear local fractional gas dynamics equation and nonlinear local fractional Klein-Gordon equation, so we get the desired non-differentiable exact solutions. The steps to solve the examples a...
متن کاملSolutions of generalized fractional kinetic equations involving Aleph functions
In view of the usefulness and great importance of the kinetic equation in certain astrophysical problems, the authors develop a new and further generalized form of the fractional kinetic equation in terms of the Aleph-function by using the Sumudu transform. This new generalization can be used for the computation of the change of chemical composition in stars like the sun. The manifold generalit...
متن کاملA new Sumudu transform iterative method for time-fractional Cauchy reaction–diffusion equation
In this paper, a new Sumudu transform iterative method is established and successfully applied to find the approximate analytical solutions for time-fractional Cauchy reaction-diffusion equations. The approach is easy to implement and understand. The numerical results show that the proposed method is very simple and efficient.
متن کاملSome Remarks on the Fractional Sumudu Transform and Applications
In this work we study fractional order Sumudu transform. In the development of the definition we use fractional analysis based on the modified Riemann Liouville derivative, then we name the fractional Sumudu transform. We also establish a relationship between fractional Laplace and Sumudu via duality with complex inversion formula for fractional Sumudu transform and apply new definition to solv...
متن کامل